Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Health Sci Eng ; 20(2): 849-860, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36406591

RESUMO

Water is an essential compound on earth and necessary for life. The presence of highly toxic contaminants such as arsenic and others, in many cases, represents one of the biggest problems facing the earth´s population. Treatment of contaminated water with magnetite (Fe3O4) nanoparticles (NPs) can play a crucial role in arsenic removal. In this report, we demonstrate arsenic removal from an aqueous solution and natural water taken from the Peruvian river (Tambo River in Arequipa, Peru) using magnetite NPs synthesized by the coprecipitation method. XRD data analysis of Fe3O4 NPs revealed the formation of the cubic-spinel phase of magnetite with an average crystallite size of ~ 13 nm, which is found in good agreement with the physical size assessed from TEM image analysis. Magnetic results evidence that our NPs show a superparamagnetic-like behavior with a thermal relaxation of magnetic moments mediated by strong particle-particle interactions. FTIR absorption band shows the interactions between arsenate anions and Fe-O and Fe-OH groups through a complex mechanism. The experimental results showed that arsenic adsorption is fast during the first 10 min; while the equilibrium is reached within 60 min, providing an arsenic removal efficiency of ~ 97%. Adsorption kinetics is well modeled using the pseudo-second-order kinetic equation, suggesting that the adsorption process is related to the chemisorption model. According to Langmuir's model, the maximum arsenic adsorption capacity of 81.04 mg·g- 1 at pH = 2.5 was estimated, which describes the adsorption process as being monolayer, However, our results suggest that multilayer adsorption can be produced after monolayer saturation in agreement with the Freundlich model. This finding was corroborated by the Sips model, which showed a good correlation to the experimental data. Tests using natural water taken from Tambo River indicate a significant reduction of arsenic concentration from 356 µg L- 1 to 7.38 µg L- 1, the latter is below the limit imposed by World Health Organization (10 µg L- 1), suggesting that magnetite NPs show great potential for the arsenic removal.

2.
Nanotechnology ; 33(33)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35508085

RESUMO

P-type and n-type metal oxide semiconductors are widely used in the manufacture of gas sensing materials, due to their excellent electronic, electrical and electrocatalytic properties. Hematite (α-Fe2O3) compound has been reported as a promising material for sensing broad types of gases, due to its affordability, good stability and semiconducting properties. In the present work, the efficient and easy-to-implement sol-gel method has been used to synthesizeα-Fe2O3nanoparticles (NPs). The TGA-DSC characterizations of the precursor gel provided information about the phase transformation temperature and the mass percentage of the hematite NPs. X-ray diffraction, transmission electron microscopy and x-ray photoelectron spectroscopy data analyses indicated the formation of two iron oxide phases (hematite and magnetite) when the NPs are subjected to thermal treatment at 400 °C. Meanwhile, only the hematite phase was determined for thermal annealing above 500 °C up to 800 °C. Besides, the crystallite size shows an increasing trend with the thermal annealing and no defined morphology. A clear reduction of surface defects, associated with oxygen vacancies was also evidenced when the annealing temperature was increased, resulting in changes on the electrical properties of hematite NPs. Resistive gas-sensing tests were carried out using hematite NPs + glycerin paste, to detect quaternary ammonium compounds. Room-temperature high sensitivity values (Sr âˆ¼ 4) have been obtained during the detection of ∼1 mM quaternary ammonium compounds vapor. The dependence of the sensitivity on the particle size, the mass ratio of NPs with respect to the organic ligand, changes in the dielectric properties, and the electrical conduction mechanism of gas sensing was discussed.

3.
Nanoscale Adv ; 3(5): 1484-1495, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132869

RESUMO

During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2 nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2 phase in all samples. However, the Bragg's peak (111) and (220) located at 2θ ∼29° and ∼47° evidence the formation of a secondary CeO2 phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+ and Ce4+ states in all samples; and on the other side, a clear reduction in the Ce3+ population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ ratio experimentally, was connected with theoretical calculations via density functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2 NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities.

4.
Phys Chem Chem Phys ; 22(14): 7329-7339, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211632

RESUMO

A shape-selective preparation method was used to obtain highly crystalline rod-, needle-, nut-, and doughnut-like ZnO morphologies with distinct particle sizes and surface areas. We study the nucleation and growth mechanism of those structures and the influence of physical-chemical parameters, such as the solvent and the pH of the solution, on the morphology, as well as the structural and optical properties. A clear correlation between the growth rate along the c-axis and surface defects was established. Our results suggest that the needle- and rod-like morphologies are formed due to the crystal growth orientation along the c-axis and the occurrence of crystalline defects, such as oxygen vacancies and interstitial Zn2+ located at the surface, whereas nuts and doughnuts are formed due to growth along all crystalline planes except those related to growth along the c-axis. Based on the experimental results, growth mechanisms for the formation of ZnO structures were proposed. We believe this synthetic route will be of guidance to prepare several materials whose shapes will depend on the desired applications.

5.
Phys Chem Chem Phys ; 22(6): 3702-3714, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32003381

RESUMO

In this work, we present a coupled experimental and theoretical first-principles investigation on one of the more promising oxide-diluted magnetic semiconductors, the Sn1-xCoxO2 nanoparticle system, in order to see the effect of cobalt doping on the physical and chemical properties. Our findings suggest that progressive surface enrichment with dopant ions plays an essential role in the monotonous quenching of the surface disorder modes. That weakening is associated with the passivation of the oxygen vacancies as the Co excess at the surface becomes larger. Room-temperature 119Sn Mössbauer spectroscopy data analysis revealed the occurrence of a distribution of isomer shifts, related to the different non-equivalent surroundings of Sn4+ ions and the coexistence of Sn2+/Sn4+ at the particle surfaces provoked by the inhomogeneous distribution of Co ions, in agreement with the X-ray photoelectron spectroscopy measurements. Magnetic measurements revealed a paramagnetic behavior of the Co ions dispersed in the rutile-type matrix with antiferromagnetic correlations, which become stronger as the Co content is increased. Theoretical calculations show that a defect with two Co mediated by a nearby oxygen vacancy is the most likely defect. The predicted effects of this defect complex are in accordance with the experimental results.

6.
Sci Rep ; 9(1): 4185, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862882

RESUMO

The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes = 3.9 ± 0.2 nm attached to Fe3O4 nanoparticle cores ( = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe3O4 (Au@PEI-Fe3O4) nanoparticles are able to retain bulk magnetic moment MS = 82-84 Am2/kgFe3O4, with the Verwey transition observed at TV = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 µW/cell for PEI-Fe3O4 and Au@PEI-Fe3O4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization.

7.
Sci Rep ; 7: 41732, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165012

RESUMO

We present a systematic study of core-shell Au/Fe3O4 nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of d = (6.9 ± 1.0) nm surrounded by Fe3O4 shell with a thickness of ~3.5 nm, epitaxially grown onto the Au core surface. The Au/Fe3O4 core-shell structure was demonstrated by high angle annular dark field scanning transmission electron microscopy analysis. The magnetite shell grown on top of the Au nanoparticle displayed a thermal blocking state at temperatures below TB = 59 K and a relaxed state well above TB. Remarkably, an exchange bias effect was observed when cooling down the samples below room temperature under an external magnetic field. Moreover, the exchange bias field (HEX) started to appear at T~40 K and its value increased by decreasing the temperature. This effect has been assigned to the interaction of spins located in the magnetically disordered regions (in the inner and outer surface of the Fe3O4 shell) and spins located in the ordered region of the Fe3O4 shell.

8.
J Phys Condens Matter ; 27(9): 095301, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25679305

RESUMO

In this study, we report on the structural and hyperfine properties of Al-doped SnO2 nanoparticles synthesized by a polymer precursor method. The x-ray diffraction data analysis carried out using the Rietveld refinement method shows the formation of only rutile-type structures in all samples, with decreasing of the mean crystallite size as the Al content. A systematic study of the unit cell, as well as the vicinity of the interstitial position show strong evidence of two doping regimes in the rutile-type structure of SnO2. Below 7.5 mol% doping a dominant substitutional solution of Al(+3) and Sn(4+)-ions is determined. However, the occupation of both substitutional and interstitial sites is determined above 7.5 mol% doping. These findings are in good agreement with theoretical ab initio calculations.

9.
Artigo em Inglês | MEDLINE | ID: mdl-22436999

RESUMO

The chemical stability of magnetic particles is of great importance for their applications in medicine and biotechnology. The most challenging problem in physics of disordered systems of magnetic nanoparticles is the investigation of their dynamic properties. The chemical coprecipitation process was used to synthesize spherical magnetite nanoparticles of 14 nm. The as-prepared magnetite nanoparticles have been aged in the matrix. Magnetic properties and aging effect were studied by Mössbauer spectroscopy at temperatures ranging from 77 to 300 K, and X-ray diffraction. At room temperature, the Mössbauer spectrum showed superparamagnetic behavior of the particles, while well-defined sextets were observed at 77K, indicating a blocked regime. The superparamagnetic magnetite nanoparticles can be used as microbead biosensors.


Assuntos
Compostos Férricos/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Nanocompostos/química , Polímeros/química , Polímeros/síntese química , Espectroscopia de Mossbauer , Temperatura , Difração de Raios X
10.
J Phys Condens Matter ; 22(49): 496003, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406789

RESUMO

Ni-doped SnO2 nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO2, but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to ∼ 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) ∼ 1.2 × 10 (- 3) emu g (- 1) and coercive field (HC) ∼ 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to ∼ 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...